90 research outputs found

    Investigation of Testosterone, Androstenone, and Estradiol Metabolism in HepG2 Cells and Primary Culture Pig Hepatocytes and Their Effects on 17βHSD7 Gene Expression

    Get PDF
    Steroid metabolism is important in various species. The accumulation of androgen metabolite, androstenone, in pig adipose tissue is negatively associated with pork flavor, odour and makes the meat unfit for human consumption. The 17β-hydroxysteroid dehydrogenase type 7 (17βHSD7) expressed abundantly in porcine liver, and it was previously suggested to be associated with androstenone levels. Understanding the enzymes and metabolic pathways responsible for androstenone as well as other steroids metabolism is important for improving the meat quality. At the same time, metabolism of steroids is known to be species- and tissue-specific. Therefore it is important to investigate between-species variations in the hepatic steroid metabolism and to elucidate the role of 17βHSD7 in this process. Here we used an effective methodological approach, liquid chromatography coupled with mass spectrometry, to investigate species-specific metabolism of androstenone, testosterone and beta-estradiol in HepG2 cell line, and pig cultured hepatocytes. Species- and concentration-depended effect of steroids on 17βHSD7 gene expression was also investigated. It was demonstrated that the investigated steroids can regulate the 17βHSD7 gene expression in HepG2 and primary cultured porcine hepatocytes in a concentration-dependent and species-dependent pattern. Investigation of steroid metabolites demonstrated that androstenone formed a 3′-hydroxy compound 3β-hydroxy-5α-androst-16-ene. Testosterone was metabolized to 4-androstene-3,17-dione. Estrone was found as the metabolite for β-estradiol. Inhibition study with 17βHSD inhibitor apigenin showed that apigenin didn't affect androstenone metabolism. Apigenin at high concentration (50 μM) tends to inhibit testosterone metabolism but this inhibition effect was negligible. Beta-estradiol metabolism was notably inhibited with apigenin at high concentration. The study also established that the level of testosterone and β-estradiol metabolites was markedly increased after co-incubation with high concentration of apigenin. This study established that 17βHSD7 is not the key enzyme responsible for androstenone and testosterone metabolism in porcine liver cells. © 2012 Chen et al

    The academic–vocational divide in three Nordic countries : implications for social class and gender

    Get PDF
    In this study we examine how the academic–vocational divide is manifested today in Finland, Iceland and Sweden in the division between vocationally (VET) and academicallyoriented programmes at the upper-secondary school level. The paper is based on a critical re-analysis of results from previous studies; in it we investigate the implications of this divide for class and gender inequalities. The theoretical lens used for the synthesis is based on Bernstein´s theory of pedagogic codes. In the re-analysis we draw on previous studies of policy, curriculum and educational praxis as well as official statistics. The main conclusions are that contemporary policy and curriculum trends in all three countries are dominated by a neo-liberal discourse stressing principles such as “market relevance” and employability. This trend strengthens the academic–vocational divide, mainly through an organisation of knowledge in VET that separates it from more general and theoretical elements. This trend also seems to affect VET students’ transitions in terms of reduced access to higher education, particularly in male-dominated programmes. We also identify low expectations for VET students, manifested through choice of textbooks and tasks, organisation of teacher teams and the advice of career counsellors.Peer reviewe

    Biosynthesis of estradiol:cloning and characterization of rodent 17β-hydroxysteroid dehydrogenase/17-ketosteroid reductase types 1 and 7

    No full text
    Abstract 17β-Hydroxysteroid dehydrogenases (17HSDs)/17-ketosteroid reductases (17KSRs) modulate the biological activity of certain estrogens and androgens by catalyzing dehydrogenase and reductase reactions between 17β-hydroxy and 17-ketosteroids. In the present study, cDNAs encoding mouse and rat 17HSD/KSR1 were cloned in order to study the role of rodent type 1 enzyme in ovarian estradiol (E2) biosynthesis and its enzymatic characteristics. Both rat and mouse 17HSD/KSR1 were expressed in granulosa cells of developing follicles, where diethylstilbestrol and follicle-stimulating hormone stimulated follicular maturation and up-regulated the expression of 17HSD/KSR1, whereas human chorionic gonadotropin caused luteinization of follicles and down-regulation of the enzyme. In line with this, the rodent type 1 enzymes are not expressed in the corpus luteum (CL). Mouse 17HSD/KSR1 showed substrate specificity different from that of the human counterpart. The mouse type 1 enzyme catalyzed the reaction from androstenedione to testosterone at least as efficiently as estrone (E1) to E2, while human 17HSD/KSR1 clearly preferred the E1 to E2 reaction. A mouse mammary epithelial cell line was found to possess strong estrogenic 17KSR activity. A novel type of 17HSD/KSR responsible for this activity was expression-cloned on the basis of its ability to convert E1 to E2 and it was chronologically named 17HSD/KSR7. Interestingly, it showed 89 % identity with a rat protein called prolactin receptor-associated protein (PRAP), which is expressed in the CL. Enzymatic characterization showed that both mouse 17HSD/KSR7 and PRAP efficiently catalyzed the reaction from E1 to E2. The mouse type 7 enzyme was most abundantly expressed in the ovary and placenta. Similar primary structure, enzymatic characteristics, and tissue distribution of mouse 17HSD/KSR7 and PRAP suggest that PRAP is rat 17HSD/KSR7. Further studies showed that in rat ovaries 17HSD/KSR7 is primarily expressed in the middle and second half of pregnancy, in parallel with E2 secretion from the CL. Using in situ hybridization, cell-specific expression of 17HSD/KSR7 was studied in the mouse ovary, uterus and placenta. In the mouse ovary, the enzyme was expressed exclusively in the CL. In the uterus on day 5 post coitum (p.c.), the type 7 enzyme was expressed in the decidua, mostly in the inner zone of antimesometrial decidua. Between day 8 and 9 p.c. the enzyme was abundant in decidua capsularis of the developing placenta, after which expression moved to the basal zone. On days 12 and 14 p.c., mouse type 7 enzyme was abundantly expressed in the spongiotrophoblasts, where expression decreased towards parturition. Altogether, rodent 17HSD/KSR7 is a new 17HSD/KSR which is involved in the biosynthesis of E2 in the ovaries. In addition, E2 produced locally in the decidua and placenta by the type 7 enzyme may have a role in decidualization and/or implantation and placentation

    Genetic effects on human cognition: lessons from the study of mental retardation syndromes

    No full text
    The molecular basis of human cognition is still poorly understood, but recent advances in finding genetic mutations that result in cognitive impairment may provide insights into the neurobiology of cognitive function. Here we review the progress that has been made so far and assess what has been learnt from this work on the relation between genes and cognitive processes. We review evidence that the pathway from genetic lesion to cognitive impairment can be dissected, that some genetic effects on cognition are relatively direct and we argue that the study of mental retardation syndromes is giving us new clues about the biological bases of cognition

    Investigating the Number of Non-linear and Multi-modal Relationships Between Observed Variables Measuring Growth-oriented Atmosphere

    No full text
    categorical data, survey data, non-linear modeling, structural equation modeling, organizational atmosphere,
    • …
    corecore